Gradient Estimates for Stokes and Navier--Stokes Systems with Piecewise DMO Coefficients

نویسندگان

چکیده

We study stationary Stokes systems in divergence form with piecewise Dini mean oscillation coefficients and data a bounded domain containing finite number of subdomains $C^{1,\rm{Dini}}$ boundaries. prove that if $(u, p)$ is weak solution the system, then $(Du, continuous. The corresponding results for Navier-Stokes are also established, from which Lipschitz regularity $H^1$-weak dimensions $d=2,3,4$ obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Analyticity estimates for the Navier-Stokes equations

We study spatial analyticity properties of solutions of the Navier-Stokes equation and obtain new growth rate estimates for the analyticity radius. We also study stability properties of strong global solutions of the Navier-Stokes equation with data in H, r ≥ 1/2 and prove a stability result for the analyticity radius.

متن کامل

Smoluchowski Navier-Stokes Systems

We discuss equilibria, dynamics and regularity for Smoluchowski equations coupled to Navier-Stokes equations. Introduction We consider mixtures of fluids and microscopic inclusions. The microscopic inclusions are characterized by state variables m ∈ M , where M is a compact smooth Riemannian manifold without boundary. The simplest example is that of microscopic rods with directors m ∈ S. The mi...

متن کامل

Trees for Navier-stokes

We estabilish a representation of the solution of 3d Navier-Stokes equations in the space Φ(α, α) using sums over rooted trees. We study the convergence properties of the series so obtained recovering in a simplified manner some results obtained recently by Sinai and other known results. In particular we extend the series representation of Sinai to the critical case where there exists global so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2022

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/21m1423518